Водород назвали важным источником энергии для морских бактерий

09 Feb 2023

Австралийские, новозеландские и австрийские исследователи выяснили, что молекулярный водород служит существенным источником энергии для бактерий из разных морских экосистем. Они также подтвердили важность монооксида углерода для жизнедеятельности этих микроорганизмов. Отчет о работе опубликован в журнале Nature Microbiology.

В последнее десятилетие стали накапливаться данные о том, что следовые газы атмосферы служат важным источником энергии для аэробных бактерий в наземных экосистемах. Среди них особое значение в силу распространенности и энергоемкости имеют молекулярный водород (H2) и монооксид углерода (CO, угарный газ). Микроорганизмы окисляют их с помощью железо-никелевых [NiFe] гидрогеназ групп 1 и 2, а также дегидрогеназы монооксида углерода (CO-дегидрогеназы) формы 1.

Некоторым органогетеротрофным бактериям это помогает пережить длительное голодание в отсутствие питательного субстрата, другим — миксотрофам — расти, окисляя следовые газы наряду с другими источниками энергии. К настоящему времени способность поглощать водород и СО в их природных концентрациях доказана для представителей восьми родов, при этом генами необходимых для этого ферментов обладает большинство почвенных бактерий.

Как обстоят дела в других экосистемах, даже в таких обширных как морские, до сих пор известно относительно мало. При этом в отличие от почв, где водорода и СО обычно меньше, чем в атмосфере, поверхностные слои мирового океана этими газами перенасыщены, к полярным областям концентрация первого снижается, а второго — повышается. Ранее было показано, что морские бактерии могут поглощать СО; в исследованиях на культурах клеток он не влиял на рост морских изолятов, однако в периоды голодания экспрессия генов его метаболизма значительно повышалась. Также было известно, что водород потребляют некоторые бактерии бентоса и гидротермальных источников («черных курильщиков»), по пелагическим прокариотам такой информации не было.

Чтобы разобраться в этом вопросе, сотрудники Университетов Монаша, Отаго, Нового Южного Уэльса и Вены выполнили метагеномное и биогеохимическое профилирование добытых ими восьми образцов морской воды из океанической трансекты Мунида, охватывающей прибрежные новозеландские, субтропические и субантарктические воды; четырех — из умеренного городского залива Порт-Филлип и двух — с тропического кораллового острова Херон. В анализ также включили глобальные метагеномные и метатранскриптомные данные, полученные ранее в ходе кругосветной экспедиции на шхуне «Тара».

Все образцы были перенасыщены водородом и CO по сравнению с атмосферой, при инкубации ex situ микробное окисление следовых газов наблюдалось во всех, кроме одного из них. В воде с берега, из промежуточной зоны и центра залива общая скорость окисления СО была в 18 раз выше, чем водорода. Схожая картина наблюдалась у островного побережья. В образцах из океанической трансекты также происходило быстрое поглощение СО и медленное — водорода, однако эти процессы оказались взаимоисключающими: первый газ подвергался бактериальному окислению преимущественно в прибрежных и субтропических водах, второй — в субантарктических. По мнению исследователей, это может помочь в объяснении их неравномерного распределения в мировом океане.

Метагеномный анализ микробного состава показал типичную для поверхностных вод картину: присутствующие бактерии были способны к аэробному дыханию, органогетеротрофии и фототрофии. Возможности окисления монооксида углерода были умеренными: геном coxL, кодирующим каталитическую субъединицу СО-дегидрогеназы формы 1, обладали примерно 12 процентов бактериальных и архейных клеток. Этот показатель снижался от 25 процентов в заливе до 5,1 процента в субарктических водах.

Также в микробных сообществах обнаружили гены разнообразных гидрогеназ, обеспечивающих гидрогенотрофное дыхание, гидрогенотрофную фиксацию углерода, гидрогеногенную ферментацию и восприятие H2 как сигнальной молекулы. Среди них с большим отрывом преобладали железо-никелевые гидрогеназы, позволяющие переносить электроны водорода в дыхательную цепь. Ферменты этой подгруппы были закодированы в геномах примерно одного процента морских микроорганизмов с наибольшим уровнем (3,5 процента) в районе тропического острова и наименьшим (0,11 процента) в прибрежных и субтропических океанических водах.

Анализ метагеномов, добытых «Тарой», дал сопоставимую картину, причем уровни экспрессии аэробных гидрогеназ (средние отношения РНК к ДНК) оказались весьма высокими — 2,2; 1,1 и 12,9 для подгрупп 1d, 1l и 2a.

Филогенетический анализ показал, что гены аэробных гидрогеназ присутствуют у 11 родов морских бактерий. Три наследственные линии этих ферментов были особенно распространены — их нашли у 26 отрядов из девяти родов. СО-дегидрогеназы встречались несколько реже — у 14 отрядов из шести родов.

С помощью термодинамического моделирования исследователи выяснили, что уровни окисления СО бактериями достаточны для их выживания, но не роста. Водород, напротив, может дать некоторым литогетеротрофным и миксотрофным видам с невысокими запросами энергию для размножения.

Дополнительный анализ массивов данных «Тары» показал, что с ростом глубины вплоть до мезопелагической зоны у бактерий значительно возрастает количество генов аэробных гидрогеназ и СО-дегидрогеназ, а родопсинов, позволяющих получать энергию из света, — резко снижается. То есть с уменьшением освещения эволюционное преимущество получают поглощающие следовые газы литогетеротрофы.

Как пишут авторы работы, полученные результаты вызывают вопрос: водород и CO представляют собой один из наиболее надежных источников энергии в морской воде, почему тогда им пользуется относительно небольшая доля бактерий — значительно меньше, чем в почве?

По мнению исследователей, ограничивающим фактором может быть низкая концентрация железа: гидрогеназам необходимо 12–13 атомов этого элемента на промотор, СО-дегидрогеназам — четыре. Поэтому в поверхностных слоях воды, где света достаточно, для бактерий более выгодны родопсины, которые металлов не содержат.

В 2017 году американские исследователи выяснили, что значительную часть углекислого газа, растворенного в темных зонах океана, фиксируют бактерии, которые получают энергию за счет окисления нитритов. В том же году их британские коллеги выделили у цианобактерий высокоспециализированные органеллы — карбоксисомы, синтезирующие из углекислоты органические соединения.

Источник:NPlus1

Dec 20
19 декабря прошла научная конференция «2023: Предварительные итоги»

19 декабря 2023 года Международный институт развития научного сотрудничества «МИ ...

Nov 15
III Международный форум «СМИ и цифровые технологии перед вызовами информационного и исторического фальсификата»

14 и 15 ноября в отеле «Националь» в Москве проходит III Международный форум «СМ ...

Oct 30
МЕЖДУНАРОДНЫЙ НАУЧНО-ПРАКТИЧЕСКИЙ СЕМИНАР: «БЛИЖНИЙ ВОСТОК В УСЛОВИЯХ МЕНЯЮЩЕГОСЯ МИРОПОРЯДКА»

30 октября 2023 Центр научно-аналитической информации Института востоковедения Р ...

Oct 11
IX Международная встреча интеллектуалов на тему «Евразийские Балканы в большой мировой игре»

10-11 октября в Белграде прошла IX Международная встреча интеллектуалов на тему ...

Наши партнеры

Президиум

Profesor Name
Пономарева Елена Георгиевна

Президент Международного Института Развития Научного Сотрудничества
Российский политолог, историк, публицист. Доктор политических наук, профессор МГИМО

Profesor Name
Ариф Асалыоглу

Генеральный директор Международного Института Развития Научного Сотрудничества

Profesor Name
Мейер Михаил Серафимович

Научный руководитель Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор

Profesor Name
Наумкин Виталий Вячеславович

Председатель Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук, профессор, член-корреспондент РАН. Директор Института востоковедения РАН. Член научного совета Российского совета по международным делам.

Profesor Name
Мирзеханов Велихан Салманханович

Заместитель Председателя Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор кафедры стран постсоветского зарубежья РГГУ, профессор факультета глобальных процессов МГУ им. М.В. Ломоносова.

Встреча российских и турецких молодых интеллектуалов