Фотонные кольца черной дыры сохранили информацию о ее вибрациях

14 Sep 2022

Физики-теоретики обнаружили, что в концентрических кольцах фотонов, которые вращаются вокруг черных дыр, есть конформная симметрия — внешние кольца являются увеличенной копией внутренних. Для этого ученые проанализировали снимки черной дыры в соседней галактике Мессье 87. Открытие подтверждает, что часть информации о черной дыре закодирована в фотонных кольцах, — а это может помочь в построении теории квантовой гравитации, предполагают ученые в работе в Classical and Quantum Gravity.

Вокруг черных дыр образуется светящаяся область, которая включают плазму и фотонные кольца. Фотонные кольца имеют особую структуру и состоят из фотонов, сделавших разное количество полуоборотов вокруг черной дыры перед тем, как начать движение к наблюдателю. Анализируя параметры колец, ученые могут определить с большой точностью массу и момент импульса черной дыры. Концентрическая структура колец может свидетельствовать о наличии между ними конформной симметрии, которая сохраняет углы между объектами и масштабную инвариантность. Наличие такой симметрии может иметь важное теоретическое значение для поиска голографического двойника черной дыры — квантовой системы, которая содержит всю информацию о черной дыре, — и накладывать на него определенные ограничения.

Некоторые ученые считают, что обнаружение голографического двойника черной дыры, приблизит их к теории квантовой гравитации, что позволит связать квантовую механику и общую теорию относительности. Согласно этому предположению черная дыра является голографической проекцией квантовой системы на область пространства-времени. Соответственно, она должна воспроизводить свойства оригинальной системы, в частности, сохранять симметрию. Это условие позволяет упростить поиск двойника.

Эндрю Строминджер (Andrew Strominger) с коллегами из Хайфского университета обнаружили конформную симметрию фотонных колец и конформную симметрию квазинормальных мод вращающейся черной дыры и предположили, что голографический двойник черной дыры может скрываться в фотонных кольцах. Несмотря на критическое отношение некоторых ученых к такому обобщению, практическое открытие конформности играет важную роль в понимании физики черных дыр.

Для анализа ученые использовали первое изображение тени черной дыры в галактике Мессье 87, полученное в 2019 году на Телескопе горизонта событий. На оригинальном радиоснимке видно лишь светлую область вокруг черной дыры, которая включает аккреционную плазму и фотонные кольца. Разглядеть кольца ученые смогли после компьютерных симуляций. Внутренние кольца более тусклые и тонкие, их формируют фотоны, сделавшие несколько оборотов вокруг черной дыры и соответственно содержащие информацию о ее более раннем состоянии.

Сначала ученые теоретически проанализировали околокольцевую область и обосновали конформную симметрию колец вращающейся черной дыры, исходя из решения Керра для уравнений Эйнштейна в общей теории относительности. Затем они проанализировали оптическое изображение относительно положения наблюдателя и выяснили, что кольца действительно переходят друг в друга посредством растяжения.

Также физики проанализировали квазинормальные моды (частоты Рюэля) вращающейся черной дыры — затухающие колебания, возникающие в случае нарушения теплового равновесия. Поскольку поведение системы в метрике Керра слишком сложное, они использовали приближенный метод и рассчитали лишь высокочастотные вибрации. Оказалось, что последовательные квазинормальные моды также имеют конформную симметрию. Дополнительно ученые предложили способ расчета квазинормальных мод с помощью геометрической оптики. Физики выяснили, что коэффициенты пропорциональности между конформными частотами колебаний черной дыры и фотонными кольцами равны. Значит, фотонные кольца содержат информацию о колебаниях черной дыры. Ученые предложили следующее интуитивное объяснение: когда объект падает в черную дыру, нарушая ее тепловое равновесие, он проходит через фотонную оболочку вокруг дыры, выбивая фотоны. Эти выбитые фотоны делают обороты вокруг дыры и устремляются к наблюдателю, формируя тем самым фотонные кольца.

Конформная симметрия колец и квазинормальных мод накладывает строгие ограничения на голографический двойник, который должен воспроизвести эту симметрию. Стоит отметить, что конформная симметрия носит универсальный характер и не зависит от типа звезды. Важный практический смысл имеет и тот факт, что ученые в очередной раз подтвердили успехи теоретической астрофизики с помощью наблюдательной. Вопрос, кодируют ли фотонные кольца квантовую информацию о черной дыре и являются ли частью ее голографического двойника, остается открытым.

Пока разрешения телескопов недостаточно для наблюдения структуры фотонного кольца. Но ученые уже определили условия, когда это станет возможно.

Источник: NPlus1

Dec 20
19 декабря прошла научная конференция «2023: Предварительные итоги»

19 декабря 2023 года Международный институт развития научного сотрудничества «МИ ...

Nov 15
III Международный форум «СМИ и цифровые технологии перед вызовами информационного и исторического фальсификата»

14 и 15 ноября в отеле «Националь» в Москве проходит III Международный форум «СМ ...

Oct 30
МЕЖДУНАРОДНЫЙ НАУЧНО-ПРАКТИЧЕСКИЙ СЕМИНАР: «БЛИЖНИЙ ВОСТОК В УСЛОВИЯХ МЕНЯЮЩЕГОСЯ МИРОПОРЯДКА»

30 октября 2023 Центр научно-аналитической информации Института востоковедения Р ...

Oct 11
IX Международная встреча интеллектуалов на тему «Евразийские Балканы в большой мировой игре»

10-11 октября в Белграде прошла IX Международная встреча интеллектуалов на тему ...

Наши партнеры

Президиум

Profesor Name
Пономарева Елена Георгиевна

Президент Международного Института Развития Научного Сотрудничества
Российский политолог, историк, публицист. Доктор политических наук, профессор МГИМО

Profesor Name
Ариф Асалыоглу

Генеральный директор Международного Института Развития Научного Сотрудничества

Profesor Name
Мейер Михаил Серафимович

Научный руководитель Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор

Profesor Name
Наумкин Виталий Вячеславович

Председатель Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук, профессор, член-корреспондент РАН. Директор Института востоковедения РАН. Член научного совета Российского совета по международным делам.

Profesor Name
Мирзеханов Велихан Салманханович

Заместитель Председателя Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор кафедры стран постсоветского зарубежья РГГУ, профессор факультета глобальных процессов МГУ им. М.В. Ломоносова.

Встреча российских и турецких молодых интеллектуалов