Из цинка и серебра сделали растворимую плату для умных часов

19 Aug 2021

Китайские ученые разработали проводящие цинково-серебряные чернила для перерабатываемых печатных плат. Добавка серебряных нановискеров позволила увеличить проводимость в четыре раза и напечатать рабочую плату для аналога умных часов. Часы могут показывать время, измерять пульс и количество пройденных шагов и даже связываться со смартфоном, а при погружении в воду их корпус и плата полностью растворяются за сорок часов. Результаты исследования опубликованы в журнале Applied Materials and Interfaces.

Каждый год люди выбрасывают более 50 миллионов тонн электроприборов. С распространением умных часов, сенсоров и прочих миниатюрных гаджетов проблема электронного мусора будет только усугубляться. Перерабатывать такие устройства стандартными способами может быть попросту невыгодно, ведь разделение миниатюрных микросхем на составные части отнимает много времени, а масса извлекаемых металлов получается совсем небольшой.

В 2019 году китайские ученые под руководством Сяня Хуана (Xian Huang) из Тяньцзиньского Университета придумали для проблемы оригинальное решение — сделать части микросхем растворимыми. В этом случае устройство, попав в воду, само распадется на части, и дальнейшая переработка пройдет значительно проще. Хуан и его коллеги разработали проводящий композит на основе цинковых наночастиц и ангидрида, который растворялся в воде за 30 минут. Ангидрид ученые добавили для того, чтобы управлять процессом печати и растворения: при взаимодействии с водой каждая молекула ангидрида распадается на две молекулы кислоты, которые растворяют оксидную оболочку на цинке и способствуют соединению отдельных наночастиц в проводящую монолитную структуру (материаловеды называют это процесс спеканием, так как изначально его умели проводить только при высоких температурах). А после завершения использования та же самая кислота помогает цинковым контактам растворяться.

Проводимость цинковых контактов в первой работе Хуана и его коллег была недостаточна, поэтому в своем новом исследовании ученые попробовали улучшить ее, добавив к цинковым чернилам серебряные нановискеры (нитевидные наночастицы). Авторы смешивали цинковые наночастицы и серебряные нановискеры с пропионовым ангдидридом и пропиленгликолем (для улучшения вязкости) и наносили состав на полимерные подложки методом трафаретной печати. После этого оставалось добавить несколько капель воды, чтобы активировать ангидрид и запустить процесс спекания. Сначала пропионовый ангидрид взаимодействует с водой, образуя пропионовую кислоту. Затем кислота растворяет оксидную пленку на поверхности цинковых и серебряных наночастиц, обнажая слой чистого металла. Ионы Zn2+ и Ag+ переходят в раствор, и вступают в гальваническую реакцию, в результате цинк снова осаждается на серебряных и цинковых наночастицах, как бы склеивая их между собой. Наконец, вода испаряется и остатки растворенных солей цинка и серебра осаждаются сверху на металлический композит, формируя защитный слой.

После обработки водой части плат становились более монолитными — у них уменьшалась толщина и шероховатость и возрастала проводимость.

В поисках идеального композита авторы изменяли условия печати и содержание серебряных нановискеров. Лучший образец показал проводимость 307,6 килосименс на метр — в четыре раза больше, чем предыдущие результаты для проводящих чернил на основе наночастиц. Также авторы изготовили несколько образцов с медными нановискерами, их проводимость была немного хуже (250,5 килосименс на метр) из-за более низкой собственной проводимости меди и меньшей длины нановискеров. Механическая прочность тоже оказалась на высоте — после восьми тысяч сгибаний-разгибаний платы сохраняли более 91 процента исходной проводимости. А вот стабильность в условиях влажности ученым еще предстоит улучшить — пока что при хранении без защитной оболочки цинково-серебряный композит теряет около десяти процентов своей проводимости каждые две недели.

Все платы растворялись в обыкновенной воде комнатной температуры за 30-40 минут. В этом процессе ангидрид тоже играет важную роль: сначала он превращается в кислоту, затем кислота взаимодействует с металлами, переводя их в раствор. Полного растворения серебряных нановискеров не происходит, но после растворения всего цинка нановискеры отделяются от подложки и погружаются в раствор.

Чтобы продемонстрировать возможности нового материала, ученые напечатали плату для умных часов. Все составные части умных часов — акселерометр, оксиметр, OLED-дисплей и микроконтролер — вмонтировали в цинково-серебряную плату, а корпус часов изготовили из растворимого поливинилового спирта. Такие часы могут показывать время, измерять скорость сердцебиения и количество пройденных шагов и даже связываться со смартфоном для отображения сообщений. Часы выдержали месяц работы на запястье человека, который активно занимался спортом. После этого авторы поместили часы в обыкновенную воду комнатной температуры, и за двое суток корпус и все проводящие контакты полностью растворились. Сенсоры, дисплей и другие части устройства можно было извлечь из воды и использовать повторно или переработать. Полученный раствор, который содержит растворенный цинк и остатки серебряных нановискеров, ученые дополнительно проверили на цитотоксичность и убедились, что уровень выживаемости клеток соответствует требованиям Международной Ассоциации по Стандартизации для медицинских устройств.

Хуан и его коллеги называют свое устройство «первыми растворимыми умными часами», но, строго говоря, это не совсем так: растворились только корпус и цинково-серебряные контакты, а OLED-дисплей, микроконтроллер, сенсоры, конденсаторы и резисторы — нет. Однако, вполне вероятно, что создание полностью растворимых умных часов тоже не за горами. В мае вышла статья американских ученых о полностью перерабатываемом транзисторе. Его основа сделана из бумаги, а все части микросхем — из углеродных материалов: наноцеллюлозы, углеродных нанотрубок и графена. Устройство может работать шесть месяцев при нормальной влажности и температуре, после чего углеродные нанотрубки и графен можно растворить и использовать снова. А в марте мы писали о светоизлучающем диоде, который можно нанести на кожу с помощью метода переводных татуировок, а после использования смыть обыкновенной водой с мылом.

Источник: N+1

Dec 20
19 декабря прошла научная конференция «2023: Предварительные итоги»

19 декабря 2023 года Международный институт развития научного сотрудничества «МИ ...

Nov 15
III Международный форум «СМИ и цифровые технологии перед вызовами информационного и исторического фальсификата»

14 и 15 ноября в отеле «Националь» в Москве проходит III Международный форум «СМ ...

Oct 30
МЕЖДУНАРОДНЫЙ НАУЧНО-ПРАКТИЧЕСКИЙ СЕМИНАР: «БЛИЖНИЙ ВОСТОК В УСЛОВИЯХ МЕНЯЮЩЕГОСЯ МИРОПОРЯДКА»

30 октября 2023 Центр научно-аналитической информации Института востоковедения Р ...

Oct 11
IX Международная встреча интеллектуалов на тему «Евразийские Балканы в большой мировой игре»

10-11 октября в Белграде прошла IX Международная встреча интеллектуалов на тему ...

Наши партнеры

Президиум

Profesor Name
Пономарева Елена Георгиевна

Президент Международного Института Развития Научного Сотрудничества
Российский политолог, историк, публицист. Доктор политических наук, профессор МГИМО

Profesor Name
Ариф Асалыоглу

Генеральный директор Международного Института Развития Научного Сотрудничества

Profesor Name
Мейер Михаил Серафимович

Научный руководитель Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор

Profesor Name
Наумкин Виталий Вячеславович

Председатель Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук, профессор, член-корреспондент РАН. Директор Института востоковедения РАН. Член научного совета Российского совета по международным делам.

Profesor Name
Мирзеханов Велихан Салманханович

Заместитель Председателя Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор кафедры стран постсоветского зарубежья РГГУ, профессор факультета глобальных процессов МГУ им. М.В. Ломоносова.

Встреча российских и турецких молодых интеллектуалов