Почему Земля не стала Марсом? Как геологи изучают историю магнитного поля Земли

12 Aug 2022

Исследования палеомагнетизма горных пород указывают на то, что твёрдое внутреннее ядро Земли сформировалось 550 миллионов лет назад и помогло предотвратить исчезновение магнитного поля планеты. Это произошло как раз перед началом фанерозойской эры и первого её геологического периода — кембрия, совпав по времени с началом бурного развития современных форм жизни.

Планетологи задаются вопросом: как Марс, который в ранней геологической истории был похож на Землю, обладая магнитным полем, атмосферой, тёплым климатом, а, возможно, и жизнью, дошёл до сегодняшнего состояния каменной пустыни? Возможно, ключ к ответу находится на Земле, при условии, что мы ответим на обратный вопрос: почему Земля, наоборот, не повторила путь Марса? Тем более что предпосылки к «марсианскому» сценарию, оказывается, на Земле имелись.

На глубине 2900 км от поверхности Земли проходит граница её внешнего жидкого ядра из расплавленных металлов (в основном железа и никеля). Эта геооболочка ответственна за создание и поддержание магнитного поля Земли — естественной защиты от солнечного ветра и космического излучения. Однако 565 миллионов лет назад напряжённость магнитного поля уменьшилась до примерно 10 процентов от сегодняшнего его значения. Вероятно, история Земли в тот момент могла пойти по марсианскому сценарию, но что-то вмешалось: магнитное поле внезапно восстановилось до привычного уровня. Согласно новому исследованию магнитных свойств пород той геологической эпохи, восстановление магнитного поля произошло очень быстро на геологической шкале времени — в течение нескольких десятков миллионов лет. Оно совпало с периодом формирования внутреннего ядра Земли, и завершилось перед «Кембрийским взрывом» — началом фанерозойской эры и этапом бурного развития многоклеточных форм жизни в знакомой нам форме.

Упрощённая модель внутреннего строения Земли включает несколько оболочек, различающихся по составу и геофизическим свойствам. Верхний самый тонкий слой Земли — это земная кора, где и сосредоточена жизнь. Её толщина изменяется от 5 до примерно 70 километров (под океанами и под горными цепями континентов соответственно). Следующая самая крупная оболочка — это мантия. Наконец, внутренние области — это ядро, в котором выделяют внутреннюю твёрдую и внешнюю расплавленную часть. Магнитное поле Земли создаётся перемещением расплавленного и проводящего ток материала во внешнем ядре. В свою очередь источник такого движения — вращение планеты и высокая температура её внутренних слоёв. Совокупность всех этих факторов, поддерживающих магнитное поле, называют магнитным геодинамо. Это сложная динамическая система, в которой возможны, например, постоянный дрейф и спонтанная инверсия магнитных полюсов, что и наблюдается на Земле. Но механизмы работы геодинамо не до конца понятны; во всяком случае, они довольно сложны и оставляют множество вопросов. Прежде всего неясно, как такой механизм может сохраняться в течение миллиардов лет на Земле, но затухнуть на Марсе. Очевидно, для поддержания такого «волчка» из вращающихся слоёв расплавленного металла в ядре необходим источник энергии. Насколько мы теперь понимаем, запасов только тепловой энергии в расплавленном ядре для удовлетворительного объяснения длительной его работы не хватает.

Один из правдоподобных механизмов, позволяющих «подтолкнуть» затухающее геодинамо — как раз начало кристаллизации твёрдого ядра из расплава. Кристаллизация в твёрдую фазу высвобождает скрытое тепло, которое и может стать дополнительным источником энергии.

Поскольку магнитное поле зависит от поведения ядра Земли, геофизики на протяжении десятилетий пробовали восстановить эволюцию как магнитного поля на Земле, так и его ядра. Известно, что магнитное поле существовало (почти) с момента формирования планеты; вероятно, жидкое ядро имеет сопоставимый возраст. Но твёрдое ядро — сравнительно недавнее приобретение: материал жидкого ядра начал кристаллизоваться в твёрдую фазу, как считается, порядка миллиарда лет назад. Исследовать магнитную историю Земли можно, изучая магнитные свойства определённых минералов, в своё время кристаллизовавшихся из магмы и выброшенных на поверхность. Во многих горных породах магматического происхождения содержатся частицы и минералы, которые сохранили намагниченность и направление магнитного поля на момент их кристаллизации из расплава. Исследование остаточной намагниченности вместе с радиометрической датировкой таких образцов позволяет сделать вывод о величине и даже направлении палеомагнитного поля.

Так, в образцах пород возрастом 560—580 миллионов давно заметили существенное ослабление их магнитных характеристик. Этот промежуток попадает на период в геологии, который называют эдиакарским (по местности в Австралии, где были впервые обнаружены окаменелости этой эпохи; полностью эдиакарский период «официально» простирается в интервале 635—541 миллионов лет). Он как раз предшествует кембрийскому, с которого принято отсчитывать эру фанерозоя, то есть «явной» жизни на Земле. Получается, что на протяжении где-то 50 миллионов лет перед «кембрийским взрывом» магнитное поле Земли было сильно ослаблено, более того, часто происходили его инверсии (в научной литературе есть оценки, согласно которым в определённые периоды это происходило несколько раз за миллион лет). Возможно, это и привело к первому известному массовому вымиранию — исчезновению «эдиакарской фауны», очень непохожей даже на кембрийские организмы. Осталось ответить на вопрос — насколько быстро поле восстановилось до современного значения и связать это восстановление с внутренними причинами, в частности, с процессами в ядре. Гипотеза о связи восстановления магнитного поля с началом кристаллизации внутреннего ядра верифицируема: если это так, то восстановление должно произойти за очень короткий геологический промежуток. Значит, необходимо найти свидетельства нормальной интенсивности поля в горных породах возрастом немного моложе позднего эдиакарского. Это и было недостающим звеном (конечно, далеко не единственным) в палеомагнитной летописи Земли, которое удалось найти.

Далее в источнике: XX2 век

Dec 20
19 декабря прошла научная конференция «2023: Предварительные итоги»

19 декабря 2023 года Международный институт развития научного сотрудничества «МИ ...

Nov 15
III Международный форум «СМИ и цифровые технологии перед вызовами информационного и исторического фальсификата»

14 и 15 ноября в отеле «Националь» в Москве проходит III Международный форум «СМ ...

Oct 30
МЕЖДУНАРОДНЫЙ НАУЧНО-ПРАКТИЧЕСКИЙ СЕМИНАР: «БЛИЖНИЙ ВОСТОК В УСЛОВИЯХ МЕНЯЮЩЕГОСЯ МИРОПОРЯДКА»

30 октября 2023 Центр научно-аналитической информации Института востоковедения Р ...

Oct 11
IX Международная встреча интеллектуалов на тему «Евразийские Балканы в большой мировой игре»

10-11 октября в Белграде прошла IX Международная встреча интеллектуалов на тему ...

Наши партнеры

Президиум

Profesor Name
Пономарева Елена Георгиевна

Президент Международного Института Развития Научного Сотрудничества
Российский политолог, историк, публицист. Доктор политических наук, профессор МГИМО

Profesor Name
Ариф Асалыоглу

Генеральный директор Международного Института Развития Научного Сотрудничества

Profesor Name
Мейер Михаил Серафимович

Научный руководитель Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор

Profesor Name
Наумкин Виталий Вячеславович

Председатель Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук, профессор, член-корреспондент РАН. Директор Института востоковедения РАН. Член научного совета Российского совета по международным делам.

Profesor Name
Мирзеханов Велихан Салманханович

Заместитель Председателя Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор кафедры стран постсоветского зарубежья РГГУ, профессор факультета глобальных процессов МГУ им. М.В. Ломоносова.

Встреча российских и турецких молодых интеллектуалов