Кислотные вычисления Почему не получились ДНК-компьютеры

08 Nov 2022

Скорый кризис транзисторных процессоров в начале 1990-х казался неизбежным. И пока в одних лабораториях альтернативу искали, проектируя квантовые алгоритмы и экспериментируя с кубитами, в других — двигали компьютеры на биомолекулах. В 1994 году практически одновременно ученые собрали первый квантовый вентиль и решили первую задачу с помощью ДНК. Но к тому, чтобы двигаться дальше, одни «альтернативные айтишники» были готовы лучше, чем другие. Проектировать квантовые компьютеры начали задолго до появления кубита. Еще в 60-х теоретики занялись квантовой информатикой, а к 80-м уже думали о квантовых алгоритмах, возможном устройстве логических вентилей на кубитах, а экспериментаторы собирали разнообразные прототипы кубитов. А над теорией ДНК-вычислений никто специально не работал. Там сразу начали решать конкретные вычислительные задачи.

К концу XX века биохимики научились проводить с молекулами ДНК уже довольно много процедур. Считывать с них информацию, расплетать двойную цепочку, сплетать обратно, добавлять к последовательности новые нуклеотиды, заменять один нуклеотид на другой, резать цепочку в нужном месте и сшивать. На транзисторы классических компьютеров, равно как на кубиты квантовых и их логику, вся эта биохимия непохожа. Но не видеть вычислительного потенциала в таком «натуральном» способе работы с информацией ученые не могли.

В последовательности химических реакций можно разглядеть логическую схему. На входе одно вещество, на выходе — другое. Или несколько, но в определенном соотношении. Поэтому если правильно подобрать реакции, то строение и количество получившихся молекул может кодировать решение какой-то задачи.

Первым, кто понял, что имеющихся у биологов инструментов уже хватает для вычислений, стал математик Леонард Адлеман, один из создателей системы шифрования RSA (Rivest — Shamir — Adleman). Познакомившись в начале 1990-х с миром ДНК, ученый, по его собственным словам, «отчетливо увидел» аналогию между нуклеиновой логикой и транзисторной логикой компьютерных процессоров — и уже в 1994 году опубликовал статью об эксперименте, в котором нуклеиновые кислоты решили задачу о гамильтоновом цикле на графе.

Это частный случай NP-полной задачи коммивояжера (о полиномиальных и неполиномиальных задачах мы говорили в материале «Удаленное доказательство»). В задаче коммивояжера определенное количество точек на карте надо соединить самой короткой траекторией, ни одну из них при этом не пропустив. В задаче поиска гамильтонова пути надо просто доказать, что траектория, которая соединяет все точки и проходит через каждую ровно один раз, существует. Вычислитель Адлемана искал решение для графа с семью узлами.

В этом ДНК-вычислителе каждому из узлов графа соответствовала случайная молекула из 20 нуклеотидов. Соответственно, ребра графа, то есть соединения узлов, складывались из двух половинок: первые десять звеньев — 3′-хвост молекулы одного узла, а вторые десять — 5′-хвост второй. Ребра таким образом становились векторами: i→j-последовательность нуклеотидов отличалась от j→i-последовательности. Это и нужно для того, чтобы синтезировать непрерывные траектории, последовательно идущие через узлы графа.

Биопроцессор Адлемана использовал ДНК в качестве носителя информации, а для операций над ней — полимеразу и лигазу, которые, соответственно, синтезировали новые цепочки нуклеиновых кислот и сшивали их друг за другом.

Расчеты, которые сам Адлеман в уме производил за минуту, у его компьютера заняли неделю. Это был успех — наивный эксперимент продемонстрировал принципы ДНК-вычислений. Работа стала основополагающей для всего направления «дезоксирибонуклеинового IT» и следующие несколько лет вдохновленные примером Адлемана ученые строили аналогичные ДНК-схемы для решения похожих комбинаторных задач.

Оценки показывали, что если правильно спроектировать эксперимент и минимизировать потери времени на лабораторные процедуры, то для решения NP-полных задач компьютер на ДНК может оказаться эффективнее классической машины. Компьютер Адлемана проводил больше тысячи операций с производительностью 100 терафлопс — классические компьютеры достигли таких показателей только к 2005 году.

Квантовые машины в те времена ничего решать не умели, так что даже компьютерами называться не могли. И ДНК-вычислители, несмотря на отсутствие теоретической базы (которая у квантовых как раз была), оказались на несколько шагов впереди. Их архитектура позволяла проводить огромное число параллельных вычислений в виде одновременных реакций молекул друг с другом. Оставалось найти под такие возможности подходящие задачи.

Продолжение в источнике: NPlus1

Источник фото:naturalblaze

Dec 20
19 декабря прошла научная конференция «2023: Предварительные итоги»

19 декабря 2023 года Международный институт развития научного сотрудничества «МИ ...

Nov 15
III Международный форум «СМИ и цифровые технологии перед вызовами информационного и исторического фальсификата»

14 и 15 ноября в отеле «Националь» в Москве проходит III Международный форум «СМ ...

Oct 30
МЕЖДУНАРОДНЫЙ НАУЧНО-ПРАКТИЧЕСКИЙ СЕМИНАР: «БЛИЖНИЙ ВОСТОК В УСЛОВИЯХ МЕНЯЮЩЕГОСЯ МИРОПОРЯДКА»

30 октября 2023 Центр научно-аналитической информации Института востоковедения Р ...

Oct 11
IX Международная встреча интеллектуалов на тему «Евразийские Балканы в большой мировой игре»

10-11 октября в Белграде прошла IX Международная встреча интеллектуалов на тему ...

Наши партнеры

Президиум

Profesor Name
Пономарева Елена Георгиевна

Президент Международного Института Развития Научного Сотрудничества
Российский политолог, историк, публицист. Доктор политических наук, профессор МГИМО

Profesor Name
Ариф Асалыоглу

Генеральный директор Международного Института Развития Научного Сотрудничества

Profesor Name
Мейер Михаил Серафимович

Научный руководитель Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор

Profesor Name
Наумкин Виталий Вячеславович

Председатель Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук, профессор, член-корреспондент РАН. Директор Института востоковедения РАН. Член научного совета Российского совета по международным делам.

Profesor Name
Мирзеханов Велихан Салманханович

Заместитель Председателя Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор кафедры стран постсоветского зарубежья РГГУ, профессор факультета глобальных процессов МГУ им. М.В. Ломоносова.

Встреча российских и турецких молодых интеллектуалов